Concentration for integrable directed polymer models
نویسندگان
چکیده
Dans cet article, nous considérons quatre modèles intégrables de polymères dirigés pour lesquels on sait démontrer que l’énergie libre a des fluctuations type KPZ. Un cadre d’analyse commun ces est présenté dans (ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018) 509–547). Nous obtenons estimées les moments centraux la fonction partition, d’ordre quelconque, à l’échelle quasi-optimale N13+ϵ, l’aide d’une méthode itérative déjà appliquée au polymère semi-discret (Noack and Sosoe (2020)). Parmi nouveautés qui tirent profit structur structure intégrable, développons formules corrélations entre fonctions et poids bord. Ces formulent remplacent l’intégration par partie gaussienne apparait notre précédent travail
منابع مشابه
Non-concentration of Quasimodes for Integrable Systems
We consider the possible concentration in phase space of a sequence of eigenfunctions (or, more generally, a quasimode) of an operator whose principal symbol has completely integrable Hamilton flow. The semiclassical wavefront set WFh of such a sequence is invariant under the Hamilton flow. In principle this may allow concentration of WFh along a single closed orbit if all frequencies of the fl...
متن کاملThe Directed Polymer — Directed Percolation Transition
We study the relation between the directed polymer and the directed percolation models, for the case of a disordered energy landscape where the energies are taken from bimodal distribution. We find that at the critical concentration of the directed percolation, the directed polymer undergoes a transition from the directed polymer universality class to the directed percolation universality class...
متن کاملClebsch-like integrable models
A countable class of integrable dynamical systems, with four dimensional phase space and conserved quantities in involution (Hn, In) are exhibited. For n = 1 we recover Clebsch sytem. All these systems are also integrable at the quantum level.
متن کاملNeumann-like integrable models
A countable class of integrable dynamical systems, with four dimensional phase space and conserved quantities in involution (Hn, In) are exhibited. For n = 1 we recover Neumann sytem on T ∗ S2. All these systems are also integrable at the quantum level.
متن کاملIntegrable Stochastic Ladder Models
A general way to construct ladder models with certain Lie algebraic or quantum Lie algebraic symmetries is presented. These symmetric models give rise to series of integrable systems. It is shown that corresponding to these SU(2) symmetric integrable ladder models there are exactly solvable stationary discrete-time (resp. continuous-time) Markov processes with transition matrices (resp. intensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1154